KBlab: An Equational Theorem Prover for the Macintosh
نویسندگان
چکیده
KBlab is a Completion based theorem prover for equational logic, written in the language C and developed on the Macintosh in the MPW (Macintosh Programmer Workshop) programming environment. The core of KBlab is the Knuth–Bendix Completion Procedure (KB) [9,7,1], extended to Unfailing Knuth– Bendix (UKB) [5], S–strategy [5] and inductive theorem proving (IKB). IKB implements the Huet–Hullot method for inductionless induction [8] and the Fribourg linear strategy [3]. The Knuth–Bendix ordering [9] and both the multiset extension and the lexicographic extension of the recursive path ordering are available.
منابع مشابه
Using Term Space Maps to Capture Search Control Knowledge in Equational Theorem Proving
We describe a learning inference control heuristic for an equational theorem prover. The heuristic selects a number of problems similar to a new problem from a knowledge base and compiles information about good search decisions for these selected problems into a term space map, which is used to evaluate the search alternatives at an important choice point in the theorem prover. Experiments on t...
متن کاملIntegrating Decision Procedures in Reflective Rewriting-Based Theorem Provers ?
We propose a design for the integration of decision procedures in reflective rewritingbased equational theorem provers. Rewriting-based equational theorem provers use term rewriting as their basic proof engine; they are particularly well suited for proving properties of equational specifications. A reflective rewriting-based theorem prover is itself an executable equational specification, which...
متن کاملA quick ITP tutorial
The ITP tool is an experimental inductive theorem prover for proving properties of Maude equational specifications, i.e., specifications in membership equational logic with an initial algebra semantics. The ITP tool has been written entirely in Maude and is in fact an executable specification of the formal inference system that it implements.
متن کاملAn Application of Automated Equational Reasoning to Many-valued Logic
In this paper we present the theorem prover SBR3 for equational logic and its application in the many-valued logic of Lukasiewicz. We give a new equational axiomatization of many-valued logic and we prove by SBR3 that it is equivalent to the classical equational presentation of such logic given by Wajsberg. We feel that our equational axiomatization of Wajsberg algebras is more suited for autom...
متن کاملUTP2: Higher-Order Equational Reasoning by Pointing
We describe a prototype theorem prover, U·(TP)2, developed to match the style of hand-written proof work in the Unifying Theories of Programming semantical framework. This is based on alphabetised predicates in a 2nd-order logic, with a strong emphasis on equational reasoning. We present here an overview of the user-interface of this prover, which was developed from the outset using a pointand-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1989